The impact of ¹⁷O+ α reaction rate uncertainties on the s-process in rotating massive stars

J. Frost-Schenk,¹ P. Adsley,^{2,3,4,5} A.M. Laird,¹ R. Longland,^{6,7} C. Angus,^{1,8} C. Barton,¹ A. Choplin,⁹ C. Aa. Diget,¹ R. Hirschi,^{10,11} C. Marshall,^{6,7} F. Portillo Chaves ^{6,7} and K. Setoodehnia^{6,7}

¹Department of Physics, University of York, York YO10 5DD, UK

²School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa

³*iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, South Africa*

⁴Cyclotron Institute, Texas A&M University, College Station, Texas, TX 77843, USA

⁵Department of Physics and Astronomy, Texas A&M University, College Station, Texas, TX 77843, USA

⁶Department of Physics North Carolina State University, Raleigh, North Carolina, NC 27695-8202, USA

⁷Triangle Universities Nuclear Laboratory, Durham, North Carolina, NC 27708-0308, USA

⁸*TRIUMF*, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada

⁹Institut d'Astronomie et d'Astrophysique, Universite' Libre de Bruxelles, CP 226, B-1050 Brussels,

Belgium

¹⁰Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, UK ¹¹Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Half of the elements heavier than iron were produced in the s-process. Neutrons are produced from source reactions, more importantly ${}^{13}C(\alpha,n)$ and ${}^{22}Ne(\alpha,n)$ and captured on seed nuclei. The neutron-capture rate is rather slower than the beta-decay rate and thus the nuclei produced during this process are close to the line of stability. In reality, "the" s-process is something of a misnomer since various different slow neutron-capture processes take place in different astrophysical locations caused by different reactions and with different characters.

A number of factors influence the elemental abundances of the elements created in the s-process. These include the amount of s-process neutron seed material (¹³C and ²²Ne) available, the metallicity of the star, and the rates of various nuclear reactions both in producing the neutrons for the s-process and the capture rate for those neutrons. One important set of reactions are neutron sinks: ¹⁶O captures neutrons to make ¹⁷O. The ¹⁷O(α , γ) reaction locks the captured neutron away, preventing additional nucleosynthesis. The ¹⁷O(α ,n) reaction recycles the neutrons causing additional neutron-capture reactions to take place. The ¹⁷O+ α reactions depend on the properties of excited states in the compound nucleus, ²¹Ne. To investigate the spectroscopic properties of these states, we used the ²⁰Ne(d,p)²¹Ne reaction with the TUNL Split-Pole (Enge) spectrograph. A focal-plane spectrum showing excited states in ²¹Ne is shown in Fig. 1. Using this reaction, we measured excitation energies and assigned spins and parities, and neutron widths to excited states in ²¹Ne and recomputed the ¹⁷O+ α reaction rates. We found that the neutron recycling of the ¹⁷O+ α reactions is stronger than predicted by previous rate estimates, and that the s-process in rotating metal-poor stars can potentially make elements up to at least barium (Z=56). This work has been published in Monthly Notices of the Royal Astronomical Society¹. Another paper is in preparation reporting on states in ²¹Ne below the α -particle threshold which may be interesting for nuclear structure.

¹ J. Frost-Schenk et al. MNRAS 514 2650 (2022)

Fig. 1. The focal-plane excitation-energy spectrum for the ${}^{20}Ne(d,p){}^{21}Ne$ reaction. The black spectrum shows the results from the neon-implanted carbon target and the red spectrum is that for only the carbon backing.

An additional experiment studying the 20 Ne(d,p) reaction using the HELIOS spectrometer at Argonne National Laboratory was performed in inverse kinematics. The resulting data will be published in another forthcoming paper.